一级黄色网站在线视频看看,久久精品欧美一区二区三区 ,国产偷国产偷亚洲高清人乐享,jy和桃子为什么绝交,亚洲欧美成人网,久热九九

Goodenough發表一個人的署名文章:鋰電池極簡史!
小納米 納米人 2019-10-28

1.png


本文發表于2018年3月

回頭來看這篇文章

2019年諾貝爾化學獎的三位獲得者

似乎早已定名


作為LiCoO2、LiMn2O4和LiFePO4等正極材料的發明人,Goodenough在鋰離子電池領域聲名卓著,是名副其實的“鋰離子電池之父”。

 

去年,已經96歲高齡的John B. Goodenough在Nature Electronics 刊文,回顧了可充電鋰離子電池的發明歷史,并對未來發展指明了道路,其中最關鍵的三位人物,正是今年獲得諾貝爾化學獎的三位科學家。

 

20世紀70年代,美國爆發石油危機。政府意識到對石油進口的過度依耐性,開始大力發展太陽能和風能。由于太陽能和風能的間歇性特點,最終還是需要可充電電池來儲存這些可再生的清潔能源。

 

2.jpg


圖1. 鋰離子電池原理示意圖

 

每個電池都有正負兩極,正負極通過電解質進行隔離,并將電能以化學能的形式儲存于兩極之中。兩極之間發生的化學反應產生離子和電子,離子在電池內部傳遞,并逼迫電子在電池外部傳遞,形成回路,從而產生電能。

 

要想實現可逆充放電,關鍵在于化學反應的可逆性!

  

3.jpg


圖2. Stanley Whittingham

 

當時,不可充電電池大多采用鋰負極和有機電解液。為了實現可重復充電電池,大家都開始致力于將鋰離子可逆嵌入層狀過渡金屬硫化物正極。埃克森美孚公司的Stanley Whittingham發現,以層狀TiS2作為正極材料測插層化學可以實現可逆充放電,放電產物為LiTiS2

 

1976年,Whittingham開發的這種電池實現了良好的初次效率。但是,經過重復充放電幾次之后,電池內部形成鋰枝晶,枝晶從負極生長到正極,形成短路,可能點燃電解質。這次嘗試,又以失敗告終!

 

 

4.jpg

圖3. LiCoO2

 

與此同時,轉移到牛津大學工作的Goodenough正在研究,在層狀LiCoO2和LiNiO2正極材料結構變化之前,最多有多少鋰可以從中脫嵌。最終,他們實現了一半以上的鋰從正極材料上可逆脫嵌。

 

這一研究成果,最終指引Asahi Kasei公司的Akira Yoshino制備出了第一個可充電鋰離子電池:LiCoO2為正極,石墨碳為負極。這個電池成功應用到索尼公司最早期移動電話中。

 

5.jpg

圖4. Akira Yoshino

 

為了降低成本,提高安全性。以固體作為電解質的全固態可充電電池似乎是未來發展的重要方向。

 

早在20世紀60年代,歐洲化學家就致力于將鋰離子可逆嵌入層狀過渡金屬硫化物材料之中。當時,可充電電池的標配電解質主要是H2SO4或KOH等強酸強堿性水系電解質。因為,在這類水系電解質中,H+具有良好的擴散性。

 

那時候,最穩定的可充電電池是以層狀NiOOH作為正極材料,強堿性水系電解液作為電解質。H+可以在層狀NiOOH正極中可逆嵌入,形成Ni(OH)2問題在于,水系電解質限制了電池的電壓,導致電池的能量密度較低。

 

1967年,福特汽車公司的Joseph Kummer和Neill Weber發現,在300℃以上的陶瓷電解質中,Na+具有良好的擴散性能。于是,他么發明了一個Na-S可充電電池:熔融鈉作為負極,含有碳帶的熔融硫作為正極,固體陶瓷作為電解質。然而,300℃的操作溫度,注定這個電池不可能實現商業化。

 

雖然如此,這項研究卻開啟了固態電解質的大門,啟發了正在MIT的林肯實驗室的Goodenough。當時,Goodenough正在研究過渡金屬氧化物有關的電化學工作,一門心思想要開發基于氧化物的優異鈉離子導體。基于以上研究的啟發,他和Henry Hong發明了一種框架結構的固態電解質Na1+xZr2SixP3?xO12(NASICON)。這種固態電解質具有非常好的鈉離子傳導性。

 

6.jpg

圖5. NASICON結構

 

1986年,Goodenough利用NASICON實現了無枝晶產生的全固態可充電鋰電池。目前,基于NASICON等固態電解質的全固態可充電鋰電池和鈉電池已經實現商業化。

 

2015年,波爾圖大學的Maria Helena Braga還展示了一種絕緣的多孔氧化物固體電解質,其鋰離子和鈉離子傳導性可與目前鋰離子電池中使用的有機電解質相媲美。

 

近年來,John B. Goodenough對固態電池情有獨鐘。他認為,無論從性能、成本還是安全性考慮,全固態可充電電池都是取代化石能源,最終實現新能源汽車之路的不二之選!


下面,我們來看看,Goodenough近年來在固態電池領域有哪些進展?

 

在固態電解質備受矚目的今天,世界各地的研究人員通過多種方法制備出了形貌結構各異、功能多樣的固態電解質來用于二次電池。困擾固態電解質發展的一個重要因素就是其離子電導率難以與傳統的液相電解質相媲美,遲緩的離子傳導對于二次電池來說無疑是致命的缺陷。因此,當前有關固態電解質的研究主要方向就是提高離子電導率和界面穩定性。

 

Goodenough老先生今年的幾個重要工作都與這兩方面有關,接下來,我們將對相關研究成果進行詳細深入的分析概括。

 

7.jpg


2017年底,Goodenough 老先生連同北科大范麗珍教授報道了有關聚合物-無機陶瓷復合電解質的研究成果[2]

 

研究人員通過熱壓法制備了全系列的PEO/LLZTO復合電解質,研究發現,隨著LLZTO比例的不斷增加,復合電解質的離子傳輸機理從單相聚合物傳導向包含相界面傳導的雙相機理過渡。

 

也就是說,當陶瓷所占比例達到構建滲透網絡閾值時,沿著陶瓷-聚合物相界面的鋰離子傳輸也為總的離子電導做出了貢獻。同時,LLZTO的存在使得活性聚合物PEO與金屬鋰負極接觸面積和接觸機會均減小,與此相關的界面副反應被顯著抑制,負極/電解質界面阻抗顯著下降,這有利于提高全電池的庫倫效率和循環穩定性。


8.jpg


對于Li/PEO-LLZTO/LiFePO4全電池而言,界面穩定性的改善使得其電化學極化顯著減小,在0.2C電流密度下其放電比容量高達148.6mAh/g。值得注意的是,老先生對于全電池性能的測試都是在55℃下操作的,這固然有考察電池安全性的考量,但更多的是考慮到電解質高溫電導率能夠滿足電池工作要求。

 

受“polymer in ceramic”啟發,當陶瓷成分在復合電解質中的比例過大時,是不是離子電導率就會顯著增大呢?答案顯然是否定的。這是因為納米尺寸的陶瓷填料極易團聚從而阻塞相界面周圍的滲透網絡。然而,要想實現高安全的高比能電池,必需減少復合電解質中可燃的有機聚合物比例,增加阻燃的無機陶瓷成分。這就形成了提高離子電導率和增強電池安全性的一對矛盾。

 

9.jpg


為了平衡這兩種效應,Goodenough采用水凝膠衍生的方法構建了3D -LLZTO /PEO復合電解質。他們將LLZTO融入水凝膠模板中然后除去模板,再用PEO進行澆鑄干燥[3]

 

這種人工3D滲透網絡相比簡單的納米填料分散體系,自然而然地避免了納米填料團聚的問題,同時其超高的比表面積又提供了連續的相界面網絡作為鋰離子傳輸通道。

 

對該復合電解質的電導機理深入研究后發現,除了前面提到的3D滲透網絡的作用,陶瓷組分的高介電常數和缺陷誘發的離子躍遷都對離子電導的提升有貢獻。前者能夠促進電解質中鋰鹽的高效解離提供更多載流子,而后者則來源于活性填料LLZTO的獨特性質。這種3D離子傳導網絡的構建思想與崔屹教授之前報道的有序離子傳導通道的構造具有異曲同工之妙。

 

上面兩個研究成果都與復合電解質相關,之所以選擇復合電解質體系是因為單獨的無機陶瓷電解質存在嚴重的固固界面不相容問題。在之前的研究中,人們發現陶瓷電解質中的過渡金屬離子組分能夠與金屬鋰發生氧化還原反應造成電解質的消耗,而且鋰枝晶容易從壓片電解質的晶界處優先突出生長。

 

10.jpg

 

Goodenough 先生及其團隊通過對LLZTO陶瓷電解質進行高溫碳處理(LLZTO-C)成功地解決了其界面兼容性不佳的難題[4]

 

相比未經處理的LLZTO,預處理過后的LLZTO-C電解質片層表面Li2CO3和Li-Al-O雜相被清除,避免了鋰離子溢出效應造成的空氣不穩定,實現了電解質體相與表面成分的均一。此外,LLZTO-C與金屬鋰界面由于表面雜相的消除能夠實現均質的浸潤,對于抑制鋰枝晶的生長效果顯著。


11.jpg


考慮到陶瓷電解質在多種電池體系中的潛在應用可能性,文中還探究了LLZTO-C與固態正極、液體電解質之間的界面相容性。事實上,對于固態電解質而言,均一穩定的界面組成和界面性質是實現長效可靠的電化學性能的基礎。

 

當界面化學成分不均勻或者易變時,一方面,區域性的離子電導差異會像液態電解質中一樣會誘導鋰離子優先在勢壘低的位置傳輸,造成鋰負極對應區域的熱點生長。重復電化學沉積/剝離過程中積累的內部應力也容易在機械強度低處優先釋放,造成陶瓷電解質片層破裂或電池內部短路。另一方面,界面組分與性質的差異使得電解質與正極材料界面上接觸阻抗各不相同,界面阻抗低處容量利用率高,造成電極內部充放電深度的差異。 


12.jpg

 

除了有關聚合物電解質和無機陶瓷電解質的復合研究外,Goodenough 老先生還致力于實用性新型電解質的開發與研究。2018年6月,他的團隊報道了一種空氣穩定的新型鈣鈦礦型的無機電解質-Li0.38Sr0.44Ta0.7Hf0.3O2.95F0.05[5]

 

這種新型鈣鈦礦型無機電解質具備立方結構,鋰離子處于相鄰兩個A位點共用的面上,能夠提供高達4.8×10-4S/cm的離子電導率。在3≤pH≤14的介質中能夠保持較高的化學穩定性。

 

值得注意的是,由于電解質組分中的Ta5+會與金屬鋰發生氧化還原反應使界面阻抗增大,因此與金屬鋰共用時需添加一層PEO聚合物緩沖層作為隔絕。以此裝配的全固態Li/LiFePO4和Li/S電池在65℃下表現出較小的電化學極化和較高的容量利用率。

 

此外,該固態電解質還能夠有效抑制多硫化物的穿梭效應。目前來看,經過多年的發展,現有的電解質體系相對固定但是卻又都面臨著種種挑戰。當前有關新型電解質體系的報道相對較少,在一定程度上阻礙了這個領域的拓展與突破。像幾十年前的LiCoO2和LiFePO4材料一樣,Goodenough老先生重操舊業,利用物質構效關系、憑借敏銳的科研嗅覺為固態電解質體系的開拓而孜孜不倦。

 

眾所周知,在涉足固態電解質之前,Goodenough老先生一直致力于有關二次電池電極材料的研究,如普魯士藍類化合物、TiNb2O7等。Na+等載流子在液態電解液體系中發生溶劑化效應可能會造成溶劑分子共嵌入或由于脫溶劑使得擴散動力學緩慢。此外,材料主體晶格中的過渡金屬離子也會溶出在電解液中造成晶格塌陷。而在固態電解質體系中,這些問題都不復存在。

 

因此,結合電極材料和固態電解質的研究成果,Goodenough 在2018年開發出了兩類安全性高、能量密度高、循環壽命長的全固態電池。


13.jpg

 

早在2013年,Goodenough老先生就研究了Na2MnFe(CN)6框架材料在有機電解液中的儲鈉行為。由于在材料制備過程中不可避免地引入H2O和晶格缺陷,使得充放電過程中由H2O帶來的副產物HF等侵蝕材料主體晶格。被分解的正極材料中Mn2+極易溶于電解液,從而導致活性物質利用率下降。


14.jpg


在此基礎上,Goodenough團隊選擇了鈉離子固態導體NASICON作為固態電解質組裝了高比能全固態Na/NASICON/Na2MnFe(CN)6鈉電池[6]。固態電解質的應用從根本上抑制了晶格水與液態電解液在高電位下的副反應,過渡金屬離子也不再與電解液溶劑配位溶解。相比液態電池體系,固態電池的鈉負極界面上由于副反應減少而保持著良好的離子傳輸,相應的電池庫倫效率和循環穩定性都有明顯的改善。

 

15.jpg


另一組固態全電池體系是p-聚苯胺/PMMA基凝膠聚合物電解質/K固體電池[7]。對于鉀離子電池而言,由于其載流子(K+)半徑較大而缺乏合適的嵌入主體;而p-型有機材料如聚苯胺等不受限于陽離子的脫嵌而只與陰離子的嵌入有關。在該固態電池體系中,電池的充放電機理與液態電解質相比并未發生改變。由于凝膠聚合物電解質的存在,鉀金屬枝晶的生長被抑制,界面穩定性得到提高,這是固態全電池良好電化學性能基礎。

 

這兩個研究成果賦予我們一些啟示:在傳統液態電解液中難以實現的電化學性能甚至機理有可能憑借固態電解質獨特的凝聚態性質得以實現。這種另辟蹊徑的獨特思維方式在下面的研究成果中也有體現。

 

在對電解質進行優化的同時,Goodenough另辟蹊徑地利用液態合金負極有效解決了電極-電解質界面的不相容問題和枝晶生長問題。金屬鈉與金屬鉀室溫下在較寬的比例范圍內能夠形成液態合金。以此液態金屬作為二次電池負極,可以利用液體的流動性質和自愈性質實現無枝晶的負極界面。


16.jpg


今年早些時候,Goodenough老先生研究了液態合金負極對于不同電極材料的依賴性[8]。當正極材料只能允許Na+嵌入脫出時(如Na2/3Ni1/3Mn2/3O2和Na3V2(PO4)3等),合金負極起到的是純金屬鈉負極的作用,負極中K+的沉積剝離行為被抑制;而當正極材料主體允許K+脫嵌時(如普魯士藍類化合物),合金負極就起到金屬鉀負極的作用,其中的Na+變為電化學惰性組分。


17.jpg


值得注意的是,在該項研究中所采用的液態合金負極是經過高溫滲透被固定在碳紙中的,整個封裝制備過程既不經濟又相對危險。

 

18.jpg


最近,為了更加安全經濟地使用這種活潑液態金屬負極,Goodenough 老先生又開發了一種室溫Na/K合金負極膜---將合金液體滲透進多孔金屬集流體薄膜[9]。這種創造性的設計減小了液態合金負極表面強勁的表面張力,提高了與液態電解質之間的浸潤性,減小了電極/電解質界面阻抗。此外,他們還探究了液態合金與不同電解液的相容性。碳酸酯電解液與合金負極不互溶,界面穩定能夠抑制枝晶生長又不會造成電池內短路;而醚類電解液會微量溶解合金負極,不適合全電池的裝配。


 

19.jpg


回顧Goodenough 先生近年來的科研工作,我們發現其研究工作的主線依然是圍繞著安全高比能的全固態電池展開的。老先生憑借敏銳的科研嗅覺和豐富的人生閱歷準確地捕捉到了儲能領域的熱點需求,即使已經97歲的高齡依然“筆耕不輟”。在固態電解質領域,他對離子電導率和界面問題的改善都做出了自己的貢獻。


參考文獻

[1]  Goodenough J B.How we made the Li-ion rechargeable battery[J]. Nature Electronics,2018,1(3):204.

[2]  Chen L, Li Y,Li S, et al. PEO/garnet composite electrolytes for solid-state lithiumbatteries: From “ceramic-in-polymer” to “polymer-in-ceramic”[J]. Nano Energy, 2018,46:176-184.

[3]  Bae J, Li Y,Zhang J, et al. A 3D Nanostructured Hydrogel-Framework-Derived High-PerformanceComposite Polymer Lithium-Ion Electrolyte[J]. Angewandte Chemie InternationalEdition, 2018,57(8):2096-2100.

[4]  Li Y, Chen X,Dolocan A, et al. Garnet Electrolyte with an Ultralow Interfacial Resistancefor Li-Metal Batteries[J]. Journal of the American Chemical Society,2018,140(20):6448-6455.

[5]  Li Y, Xu H,Chien P, et al. A Perovskite Electrolyte That Is Stable in Moist Air forLithium-Ion Batteries[J]. Angewandte Chemie International Edition,2018,57(28):8587-8591.

[6]  Gao H, Xin S,Xue L, et al. Stabilizing a High-Energy-Density Rechargeable Sodium Batterywith a Solid Electrolyte[J]. Chem, 2018,4(4):833-844.

[7]  Gao H, Xue L,Xin S, et al. A High-Energy-Density Potassium Battery with a Polymer-GelElectrolyte and a Polyaniline Cathode[J]. Angewandte Chemie InternationalEdition, 2018,57(19):5449-5453.

[8]  Xue L, Gao H,Li Y, et al. Cathode Dependence of Liquid-Alloy Na–K Anodes[J]. Journal of the American ChemicalSociety, 2018,140(9):3292-3298.

[9]  Xue L, Zhou W,Xin S, et al. Room-Temperature Liquid Na-K Anode Membranes[J]. AngewandteChemie International Edition, 2018.

加載更多
4611

版權聲明:

1) 本文僅代表原作者觀點,不代表本平臺立場,請批判性閱讀! 2) 本文內容若存在版權問題,請聯系我們及時處理。 3) 除特別說明,本文版權歸納米人工作室所有,翻版必究!
納米人
你好測試
copryright 2016 納米人 閩ICP備16031428號-1

關注公眾號