第一作者:曹麗娜
通訊作者:路軍嶺、韋世強、楊金龍
通訊單位:中國科學技術大學
研究亮點:
1. 利用ALD技術首次設計出一種新型Fe1(OH)x-Pt單位點界面催化劑結構。
2. 實現了低溫高效去除氫氣中微量CO制備高純氫氣。
氫燃料電池研究的重要性
氫能是未來最理想的一種清潔能源。氫燃料電池汽車以氫氣為燃料,能量轉化效率高,清潔零排放,是未來新能源清潔動力汽車的主要發展方向之一。然而氫燃料電池汽車的推廣目前仍然困難重重,其中一個關鍵難題是氫燃料電池電極的CO中毒問題。
現階段,氫氣主要來源于甲醇和天然氣等碳氫化合物的水蒸汽重整、水煤氣變換反應等,通常含有0.5%~2%的微量CO。作為氫燃料電池汽車的“心臟”,燃料電池電極極易被CO雜質氣體毒化,從而致使電池性能降低和壽命縮短,嚴重限制了該類汽車的推廣。
本研究擬解決的關鍵問題
富氫氛圍CO優先氧化(PROX)是車載去除氫氣中微量CO的最理想方式。然而現有PROX催化劑工作溫度相對較高(室溫以上)且區間窄,無法在寒冷條件下為氫燃料電池頻繁冷啟動過程中提供有效保護。
成果簡介
有鑒于此,中國科學技術大學路軍嶺教授、韋世強教授、楊金龍教授等課題組密切合作,利用原子層沉積技術(ALD),首次設計出一種新型Fe1(OH)x-Pt單位點界面催化劑結構,并實現了在低溫高效去除氫氣中微量CO制備高純氫氣。
圖1.Fe1(OH)x-Pt單位點界面新型催化劑結構模型示意圖
藍色、黃色、紅色、白色小球分別代表鉑、鐵、氧和氫原子。
在PROX反應中,研究人員利用該新型催化劑首次在~-75 °C至110 °C的超寬溫度區間,成功實現了100%選擇性地CO完全去除(圖2a,b),極大突破了現有PROX催化劑工作溫度相對較高且區間窄的兩大局限性,為氫燃料電池在寒冷條件下頻繁冷啟動和連續運行期間避免CO中毒,提供了一種全方位的有效保護手段,從而為未來氫燃料電池汽車的推廣掃清了一重大障礙。
更難能可貴的是,該催化劑在模擬真實環境,即CO2和水汽都存在的情況下,仍可表現出極佳的穩定性(圖2c),且比質量催化活性(5.21 molCO?h-1?gPt-1)是傳統Pt/Fe2O3催化劑的30倍(圖2d)。
?1 h?1,壓力為 0.1 MPa。(c)1cFe-Pt/SiO2催化劑的長時間穩定性測試。反應條件:1% CO、0.5% O2、48% H2、20%CO2和3% H2O,平衡氣為氦氣,空速為36,000 ml g?1h?1; 壓力為 0.1 Mpa,反應溫度為353 K。(d)催化劑比質量活性的對比。
韋世強教授課題組利用原位X射線吸收譜(XAFS)從實驗上探測到Fe1(OH)x物種在PROX反應氣氛中的結構是Fe1(OH)3,Fe原子與Pt納米顆粒表面Pt原子形成Fe-Pt的金屬鍵,而無明顯的Fe-Fe鍵,并且驚奇地發現該物種具有超高還原特性,在室溫就實現氫氣還原生成Fe1(OH)2,揭示了其高催化活性的內在原因。王兵教授課題組利用掃描隧道電子顯微鏡(STM)研究了FeOx ALD在Pt單晶表面的生長行為,觀察到了亞納米尺寸FeOx物種的形成,從而直接證明了在Pt表面上形成單分散Fe物種的可能性。與此同時,近常壓X-射線光電子能譜(NAP-XPS)實驗也進一步證實PROX反應氣氛下,與Fe成鍵的氧物種是羥基物種。
楊金龍教授課題組理論計算確定了Fe1(OH)3在Pt表面上的空間構型,證實Pt顆粒表面上形成的Fe1(OH)x-Pt單位點界面是其催化活性中心,并揭示了其催化反應機理:吸附的CO首先進攻其中一個OH,形成COOH表面中間物種;此后,O2在該界面處以極低的勢壘活化;形成的原子O隨后進攻COOH,最終生成CO2。
小結
金屬—氧化物界面在眾多催化反應中起著至關重要的作用。該工作為人們設計高活性金屬催化劑提供了一新思路。
本文綜合整理自中科大官網
參考文獻:
Lina Cao, Shiqiang Wei, Jinlong Yang, JunlingLu et al. Atomically dispersed iron hydroxide anchored on Pt for preferentialoxidation of CO in H2. Nature 2019, 565, 631–635.
https://www.nature.com/articles/s41586-018-0869-5